
Maximum Likelihood Estimation for N (µ, σ2)

Consider Xi
iid∼ N

(
µ0, σ

2
)
for i = 1, 2, . . . , n where the mean, µ0, is known, and the variance, σ2, is

unknown. In this setting, k = 1 and it is convenient to define θ = 1/σ2. We note that this implies that
σ2 = 1/θ.

The joint density function is

fX (x|θ) =

n∏
i=1

1√
2πσ2

exp

(
− (xi − µ0)

2

2σ2

)

= (2π)
−n/2

θn/2 exp

(
−
∑n

i=1 (xi − µ0)
2

2
θ

)
= L(θ|X = x)

Noting that
∑n

i=1 (Xi − µ0)
2
is θ-free, we define the statistic T (X) =

∑n
i=1 (Xi − µ0)

2
. This simplifies

the above equation to

fX (x|θ) = (2π)
−n/2

θn/2 exp

(
−T (x)

2
θ

)
Letting C(θ) = (2π)

−n/2
θn/2, h(x) = 1, T (X) =

∑n
i=1 (Xi − µ0)

2
, and ω(θ) = −θ/2, We see that we

have an exponential family of distributions. Hence, T (X) =
∑n

i=1 (Xi − µ0)
2
is minimally sufficient and

complete for θ = 1/σ2, or equivalently σ2 = 1/θ.

So, what is the maximum likelihood estimator of σ2, σ̂2 = 1/θ̂? To make life easier, we define the
log-likelihood to be

l(θ) = ln (L (θ))

= −n

2
ln(2π) +

n

2
ln(θ)− θ

2
T

Thus,

l̇(θ) =
d

dθ
l(θ) =

n

2θ
− T

2

Setting this equal to zero allows us to find θ̂.

n

2θ̂
− T

2
= 0 ⇒ n

2θ̂
=

T

2

⇒ θ̂ =
n

T

⇒ σ̂2 =
T

n

We need to confirm that σ̂2 maximizes L (θ). The second derivative of the log-likelihood is

l̈(θ) = − n

2θ2
< 0

We do, in fact, have a maximum likelihood estimator, and this estimator is based upon a minimally sufficient
and complete statistic, T (X) =

∑n
i=1 (Xi − µ0)

2
. We note that since T (X) is a function of the random

variables, X, and a constant, µ0, and it does not involve the parameter, σ2, it is a statistic.
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