

Maximum Likelihood Estimation for $N(\mu, \sigma^2)$

Consider $X_i \stackrel{\text{iid}}{\sim} N(\mu_0, \sigma^2)$ for $i = 1, 2, \dots, n$ where the mean, μ_0 , is *known*, and the variance, σ^2 , is *unknown*. In this setting, $k = 1$ and it is convenient to define $\theta = 1/\sigma^2$. We note that this implies that $\sigma^2 = 1/\theta$.

The joint density function is

$$\begin{aligned} f_{\mathbf{X}}(\mathbf{x}|\theta) &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu_0)^2}{2\sigma^2}\right) \\ &= (2\pi)^{-n/2} \theta^{n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu_0)^2}{2\theta}\right) \\ &= L(\theta|\mathbf{X} = \mathbf{x}) \end{aligned}$$

Noting that $\sum_{i=1}^n (X_i - \mu_0)^2$ is θ -free, we define the statistic $T(\mathbf{X}) = \sum_{i=1}^n (X_i - \mu_0)^2$. This simplifies the above equation to

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = (2\pi)^{-n/2} \theta^{n/2} \exp\left(-\frac{T(\mathbf{x})}{2}\theta\right)$$

Letting $C(\theta) = (2\pi)^{-n/2} \theta^{n/2}$, $h(\mathbf{x}) = 1$, $T(\mathbf{X}) = \sum_{i=1}^n (X_i - \mu_0)^2$, and $\omega(\theta) = -\theta/2$, we see that we have an exponential family of distributions. Hence, $T(\mathbf{X}) = \sum_{i=1}^n (X_i - \mu_0)^2$ is minimally sufficient and complete for $\theta = 1/\sigma^2$, or equivalently $\sigma^2 = 1/\theta$.

So, what is the maximum likelihood estimator of σ^2 , $\widehat{\sigma^2} = 1/\widehat{\theta}$? To make life easier, we define the log-likelihood to be

$$\begin{aligned} l(\theta) &= \ln(L(\theta)) \\ &= -\frac{n}{2} \ln(2\pi) + \frac{n}{2} \ln(\theta) - \frac{\theta}{2} T \end{aligned}$$

Thus,

$$\dot{l}(\theta) = \frac{d}{d\theta} l(\theta) = \frac{n}{2\theta} - \frac{T}{2}$$

Setting this equal to zero allows us to find $\widehat{\theta}$.

$$\begin{aligned} \frac{n}{2\widehat{\theta}} - \frac{T}{2} &= 0 \Rightarrow \frac{n}{2\widehat{\theta}} = \frac{T}{2} \\ &\Rightarrow \widehat{\theta} = \frac{n}{T} \\ &\Rightarrow \widehat{\sigma^2} = \frac{T}{n} \end{aligned}$$

We need to confirm that $\widehat{\sigma^2}$ maximizes $L(\theta)$. The second derivative of the log-likelihood is

$$\ddot{l}(\theta) = -\frac{n}{2\theta^2} < 0$$

We do, in fact, have a maximum likelihood estimator, and this estimator is based upon a minimally sufficient and complete statistic, $T(\mathbf{X}) = \sum_{i=1}^n (X_i - \mu_0)^2$. We note that since $T(\mathbf{X})$ is a function of the random variables, \mathbf{X} , and a constant, μ_0 , and it does not involve the parameter, σ^2 , it is a statistic.